

1. The grid opposite shows triangle A.

Triangle A is transformed to triangle B by a reflection in the line with equation x = 1

(a) On the grid, draw and label triangle B.

Triangle B is transformed to triangle C under the translation $\begin{pmatrix} 7 \\ -3 \end{pmatrix}$

(b) On the grid, draw and label triangle C.

Triangle C is transformed to triangle D under the transformation with matrix M where

$$\mathbf{M} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

- (c) On the grid, draw and label triangle D.
- (d) Describe fully the single transformation that maps triangle A onto triangle D.

c)
$$C_{1} = (-2, 1)$$
 $C_{2} = (2, 1)$
 $C_{3} = (-1, 3)$

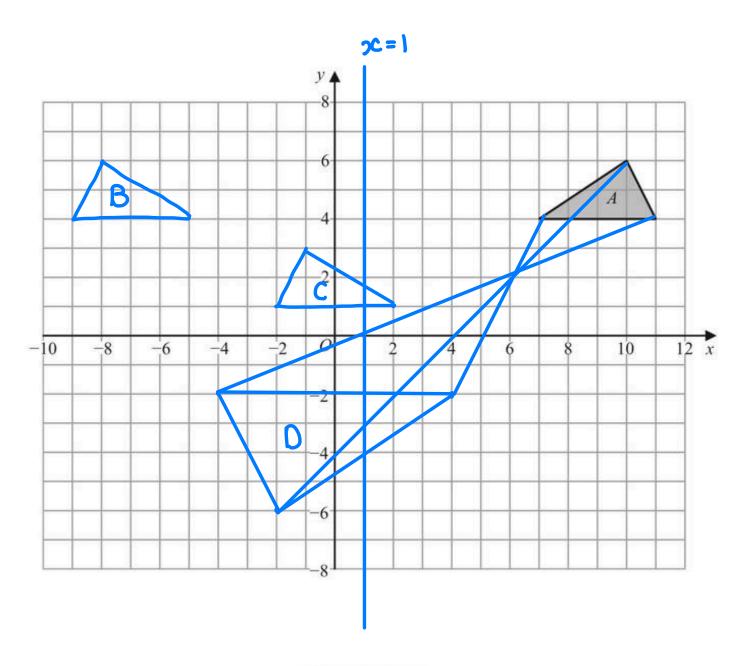
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

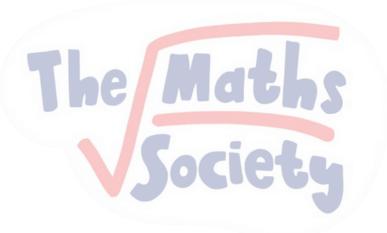
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$


$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$


$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y' \end{pmatrix}$$

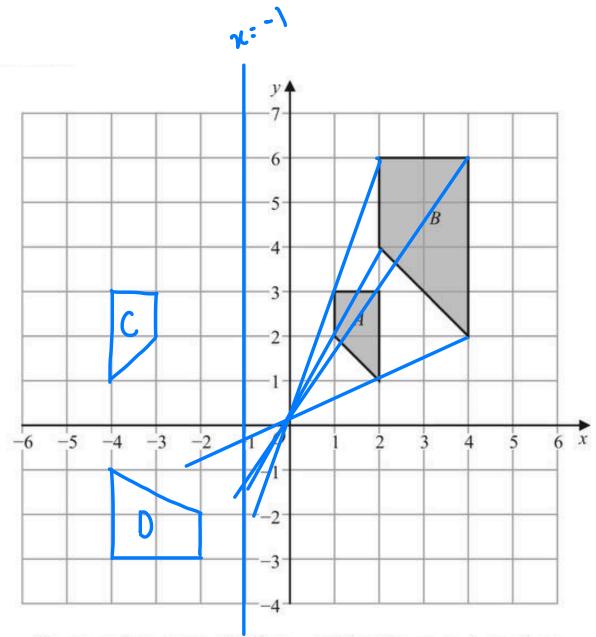
$$\begin{pmatrix} -2 & 0 \\ y' \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$

- On the grid opposite, trapezium B is the image of trapezium A under a single transformation.
 - (a) Describe fully the single transformation.

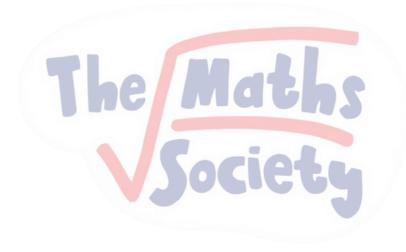
Trapezium C is the image of trapezium A under a reflection in the line with equation x = -1

(b) On the grid opposite, draw and label trapezium C.

Trapezium A is transformed to trapezium D under the transformation with matrix M where


$$\mathbf{M} = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$$

(c) On the grid opposite, draw and label trapezium D.


Trapezium D is transformed to trapezium B under the transformation with matrix N.

(d) Find matrix N.

a) Enlargement,
$$SF = 2$$
, centre $(0,0)$
c) $A = (2,1) (2,3) (1,2) (1,3)$
 $D = (-4,-1) (-4,-3) (-2,-2) (-2,-3)$
d) $B = (4,2) (4,6) (2,4) (2,6)$
 $N = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$

Turn over for a spare grid if you need to redraw your trapeziums.

Triangle A is drawn on the grid opposite.

Triangle A is reflected in the line with equation x = -1 to give triangle B.

(a) On the grid, draw and label triangle B.

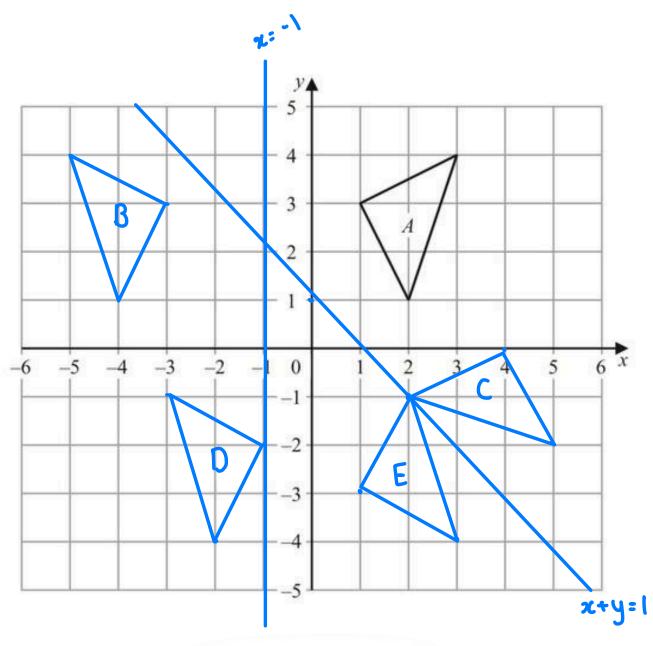
Triangle A is transformed to triangle C under a rotation of 90° clockwise about the point with coordinates (1, 0)

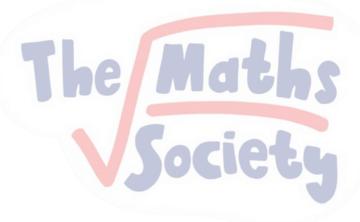
(b) On the grid, draw and label triangle C.

Triangle *B* is transformed to triangle *D* under the translation $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$

(c) On the grid, draw and label triangle D.

Triangle A is transformed to triangle E under the transformation with matrix M where


$$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

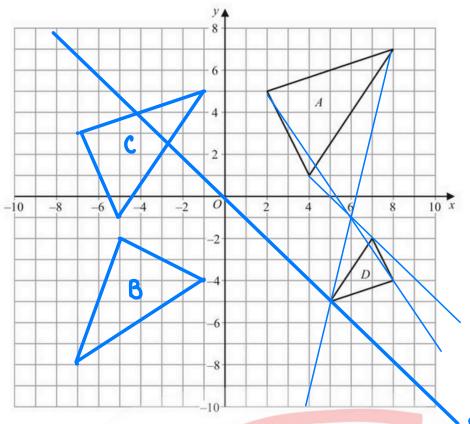

(d) On the grid, draw and label triangle E.

Triangle E is the image of triangle C under a **single** transformation.

(e) Describe fully this transformation.

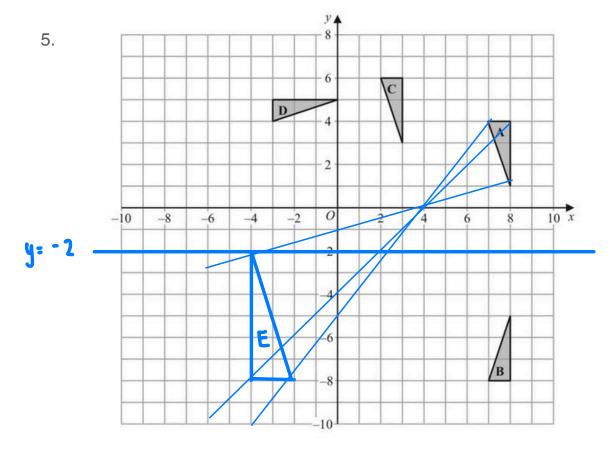
$$A=(1,3)(2,1)(3,4)$$
 $E=(1,-3)(2,-1)(3,4)$
e) reflection $x+y=1$
Society

4. Triangles A and D are drawn on the grid below.


Triangle B is the image of triangle A under a reflection in the line with equation y = -x

(a) On the grid below, draw and label triangle B.

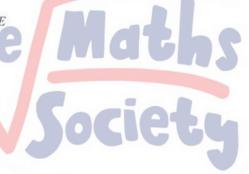
Triangle A is transformed to triangle C under the translation $\begin{pmatrix} -9 \\ -2 \end{pmatrix}$


- (b) On the grid, draw and label triangle C.
- (c) Describe fully the single transformation that maps triangle A onto triangle D.

enlargement SF = -0.5centre = (6,-1)

A spare grid is on the next page if you need to redraw your triangles.

y: -x


Triangles A, B, C and D are drawn on the grid above.

Describe fully the single transformation that maps

- (a) triangle A onto triangle B reflection at y=2
- (b) triangle A onto triangle C **translation** $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$
- (c) triangle A onto triangle D rotation 40° anticlockwise at (2, -1)

Triangle E is the image of triangle A under an enlargement with scale factor -2 and centre of enlargement (4, 0)

(d) On the grid, draw and label triangle E

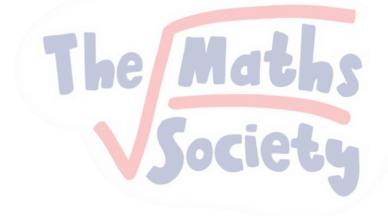
- 6. Trapeziums P and Q are drawn on the grid opposite.
 - (a) Describe fully the single transformation that maps trapezium P onto trapezium Q

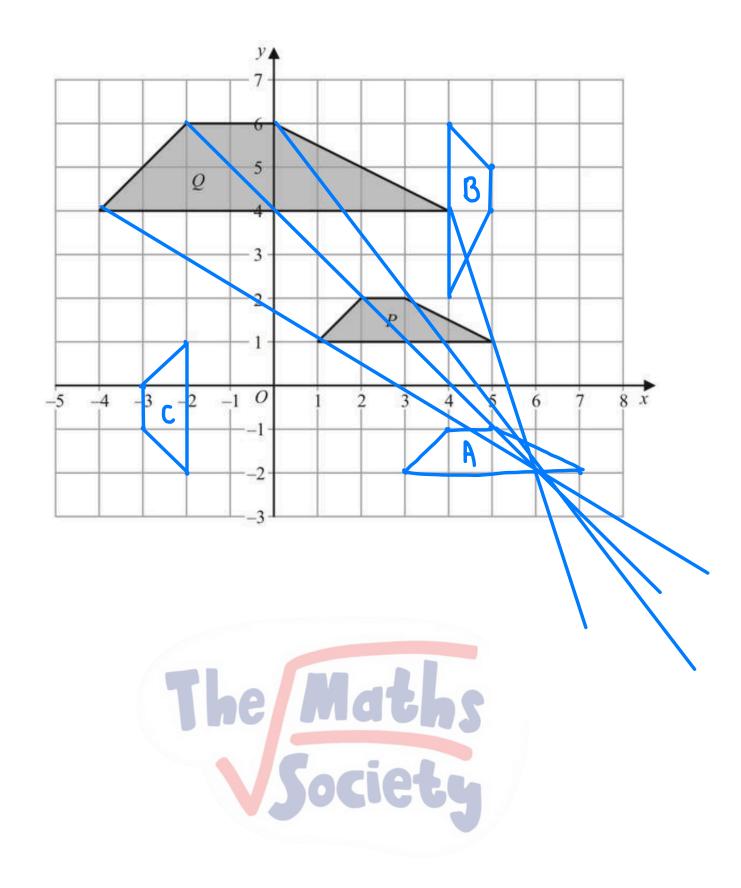
Trapezium P is transformed to trapezium A under the translation $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$ SF= 2

(b) On the grid, draw and label trapezium A

Trapezium P is transformed to trapezium B by a rotation of 90° clockwise about the point (5, 2)

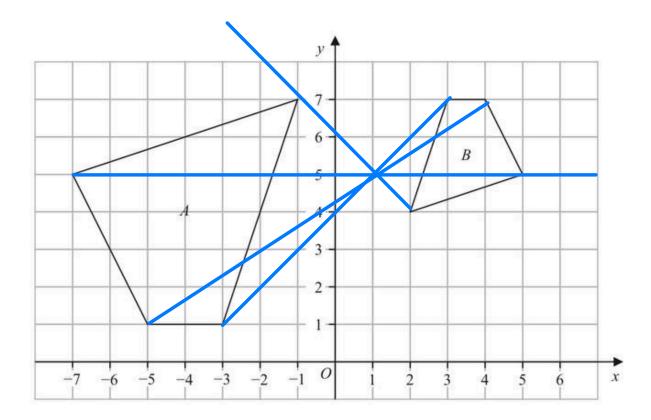
(c) On the grid, draw and label trapezium B


Trapezium C is the image of trapezium Q under the transformation with matrix M where

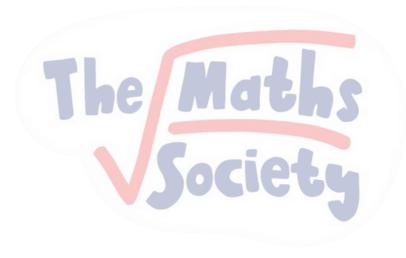

$$\mathbf{M} = \begin{pmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$$

(d) On the grid, draw and label trapezium C

$$Q = (-4, 4)(4, 4)(0,6)(-2,6)$$


$$C = (-2, -2)(-2, 2)(-3, 0)(-3, -1)$$

The Maths Society


7.

Quadrilateral A and quadrilateral B are drawn on a grid.

Quadrilateral B is the **image** of quadrilateral A under a single transformation.

Describe fully this single transformation.

